Band-Aids of the Future

MIT engineers are developing a “smart” bandage that can monitor and deliver drugs to a wound.


A group of mechanical engineers at MIT is trying to change things up. They’ve developed a bandage made from a stretchy, rubbery hydrogel. Embedded with a range of electronics and drug reservoirs, this “smart” dressing can actually monitor a wound, administer drugs and alert a doctor when more medicine is needed.

First, the team, led by professor Xuanhe Zhao, had to create a hydrogel that behaved like human skin. To accomplish this, they decided that the material, like skin, would have to be predominantly water. In November, Zhao revealed the results of the work—a hydrogel made of a thin web of biopolymers and composed of 90 percent water.


The material sticks to the metal or glass of electronic devices the way tendons stick to a bone. “Electronics are usually hard and dry, but the human body is soft and wet,” Zhao told MIT News. “If you want to put electronics in close contact with the human body, it is highly desirable to make the electronic devices soft and stretchable to fit the environment.” Zhao and his colleagues just published a paper about their hydrogel bandages in the journal Advanced Materials.

Typical synthetic hydrogels are brittle and barely stretchable, and they adhere weakly to other surfaces. To get around these challenges, Zhao’s team came up with a general design strategy for robust hydrogels, mixing water with small amounts of selected biopolymers to create soft, stretchy materials with a stiffness of 10 to 100 kilopascals—about the range of human soft tissues. The researchers also devised a way to strongly bond the hydrogel to various nonporous surfaces.

 Zhao says they’re not looking at commercialization quite yet. The bandage has not yet obtained FDA approval, but he says some of the earliest applications could be for dressing burn wounds, which need to be covered, monitored and treated.


Leave a Reply